Wbosons, Drell-Yan pairs, and jets

Pavel Nadolsky

Argonne National Laboratory

- □ RhicBos update
- New opportunities
 - lacktriangle Tests of k_T factorization (low-Q Drell-Yan process)
 - lacktriangle Hadronic decays of W bosons

Can the true behavior of $\Delta f_a(x,Q)$ (especially for sea partons) be separated from the theoretical and experimental uncertainties?

Can the true behavior of $\Delta f_a(x,Q)$ (especially for sea partons) be separated from the theoretical and experimental uncertainties?

W boson production at RHIC!

Can the true behavior of $\Delta f_a(x,Q)$ (especially for sea partons) be separated from the theoretical and experimental uncertainties?

W boson production at RHIC!

- □ Complements and surpasses polarized SIDIS
- ☐ Probes the proton structure in a different kinematical range than the Tevatron and LHC

W^{\pm} -bosons as ideal polarimeters

$$A_L^{PV} \equiv \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

At the Born level:

$$\frac{d\Delta_L \sigma(pp \xrightarrow{W^+} \ell^+ \nu_\ell X)}{dx_a dx_b d\cos\theta d\varphi} \propto \\ -\Delta u(x_a) \bar{d}(x_b) (1 + \cos\theta)^2 + \\ +\Delta \bar{d}(x_a) u(x_b) (1 - \cos\theta)^2$$

Spin asymmetries in W^{\pm} production are sensitive to the flavor structure of the polarized quark sea

Classical signature: high- p_T charged leptons and E_T

Leading order single-spin asymmetries for W boson rapidity distributions

$$A_{L}^{W^{+}}(y_{W}) = \frac{-\Delta u(x_{a})\bar{d}(x_{b}) + \Delta \bar{d}(x_{a})u(x_{b})}{u(x_{a})\bar{d}(x_{b}) + \bar{d}(x_{a})u(x_{b})}$$
$$= \begin{cases} -\Delta u(x_{a})/u(x_{a}), x_{a} \to 1\\ \Delta \bar{d}(x_{a})/\bar{d}(x_{a}), x_{b} \to 1 \end{cases}$$

$$A_{L}^{W^{-}}(y_{W}) = \frac{-\Delta d(x_{a})\bar{u}(x_{b}) + \Delta \bar{u}(x_{a})d(x_{b})}{d(x_{a})\bar{u}(x_{b}) + \bar{u}(x_{a})d(x_{b})}$$

$$= \begin{cases} -\Delta d(x_{a})/d(x_{a}), x_{a} \to 1\\ \Delta \bar{u}(x_{a})/\bar{u}(x_{a}), x_{b} \to 1 \end{cases}$$

- \square new Q range
- ☐ reliable theory (PQCD)
- $lue{}$ guaranteed large asymmetries at x o 1

Large lepton rapidities $(y_\ell \to y_\ell^{max})$

$$W^{+}: \left(\frac{\Delta u(x)}{u(x)}\right)_{x\to 1} \qquad W^{-}: \left(\frac{\Delta d(x)}{d(x)}\right)_{x\to 1}$$

Behavior of valence PDFs at $x \to 1$ is predicted by constituent quark models

☐ Exact SU(6) symmetry [disfavored]:

$$rac{\Delta u(x)}{u(x)}
ightarrowrac{2}{3}, rac{\Delta d(x)}{d(x)}
ightarrow-rac{1}{3}$$

☐ Hadron helicity conservation (Farrar, Jackson;...) [disfavored]

$$rac{\Delta u(x)}{u(x)}
ightarrow 1, rac{\Delta d(x)}{d(x)}
ightarrow 1$$

☐ Suppression of spin-1 diquarks (Close; Carlitz;...)

$$\frac{\Delta u(x)}{u(x)} \rightarrow 1, \frac{\Delta d(x)}{d(x)} \rightarrow -\frac{1}{3}$$

$A_L(y_W) pprox \Delta d(x)/d(x)$ in W^- boson production

- If the relationship $\Delta f_q(x,Q_0)/f_q(x,Q_0) \approx \text{const}$ for $x > x_0$ holds at some Q_0 ,
- and the valence PDFs dominate,

then this relationship holds at all Q [helicity conservation in PQCD radiation off valence quarks]

Beyond the leading order

A realistic model must account for

QCD radiative corrections

- □ boson decay effects
 - lacktriangledown $d\sigma/dy_W$ is not known; must look at $d\sigma/dy_e$

☐ detector acceptance

RhicBos: resummation program for polarized W^{\pm} , Z^0 , and γ^* production

(P. N., C.-P. Yuan, Nucl. Phys. B666, 3 (2003); Nucl. Phys. B666, 35 (2003))

- Monte-Carlo integrator with resummation of soft gluons at partial NNLO (NNLL) accuracy
- effects of boson's width and decay, electroweak corrections
- unpolarized, single-spin, and double-spin cross sections
- □ lepton distributions for realistic acceptance

RhicBos: 2005 study (B. Surrow et al.)

- Updated luminosity $(\mathcal{L}=400~\mathrm{pb^{-1}}~\mathrm{and}~\mathcal{L}=800~\mathrm{pb^{-1}}~\mathrm{at}~\sqrt{s}=500~\mathrm{GeV})$ and experimental binning
- Comparison vs. Pythia
 - $oldsymbol{\Theta}$ revealed a bug in RhicBos (wrong sign in front of $\cos\theta$ for W^- production)
 - in the version 1.1, available at http://hep.pa.msu.edu/~nadolsky/RhicBos/
- $\hfill \Box$ A large part of the difference is the sign change for y_{e^-} in $pp \to W^-$ (\$\Rightarrow\$Fig.)

New opportunities at RHIC (part 1)

- \square p_T distributions in unpolarized and polarized $pp \stackrel{\gamma^*}{\to} \mu^+ \mu^- X$
 - lacktriangle precision test of universality of k_T factorization (Collins-Soper-Sterman resummation)

 $q_T \neq$ 0! The shape of $d\sigma/dq_T$ at $q_T \rightarrow$ 0 cannot be described at a finite order of PQCD: calculation of the sum

$$\frac{1}{q_T^2} \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \sum_{m=0}^{2n-1} v_{mn} \left(\ln^m \frac{Q^2}{q_T^2} \quad \text{or} \quad \delta(\vec{q}_{TW}) \right)$$

is needed

- $ightharpoonup k_T$ factorization in impact parameter (b) space (Collins, Soper, Sterman, 1985)
 - proved by a factorization theorem
 (J. Collins, A. Metz, 2004; X. Ji, J.-P. Ma, F. Yuan, 2004)
 - lacktrian applies to Drell-Yan-like processes, SIDIS, and e^+e^- hadroproduction
 - lacktriangle resummed $d\sigma/dq_T$ are given by products of universal functions with perturbative and nonperturbative components

If universality holds:

- $egin{array}{l}$ parts of the resummed $d\sigma/dq_T$ can be "measured" in one set of processes and used to predict other processes
 - lacktriangle global fit of q_T data is feasible
 - lackloads for instance, the low-Q Drell-Yan process at RHIC can constrain predictions for $W,\,Z,\,\gamma\gamma,\,Z',\ldots$ production at the Tevatron and LHC
 - \star reduce theory error in the measurement of M_W at the Tevatron and LHC

Measurement of W-boson mass M_W and width Γ_W at the Tevatron $(p\bar p \to WX \to l \nu X)$

Important precision test of the standard model

Combined CDF & DØ Run-1 result:

$$M_W = 80.456 \pm 0.059 \; \text{GeV}$$
 $\left(\delta M_W/M_W = 0.0007\right)$ $\Gamma_W = 2.115 \pm 0.105 \; \text{GeV}$ $\left(\delta \Gamma_W/\Gamma_W = 0.05\right)$

Run-2 goal: reduce δM_W to 30 MeV per experiment (LHC: $\delta M_W \sim$ 15 MeV)

Uncertainties in $d\sigma/dq_T$ is a leading systematical error in M_W

Universality of CSS resummation in the global q_T fit (A. Konychev, P. N., hep-ph/0506225)

$$\left. \frac{d\sigma}{dQ^2 dy dq_T^2} \right|_{q_T^2 \ll Q^2} = \int \frac{d^2b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}} \widetilde{W}(b, Q, x_A, x_B)$$

$$\widetilde{W}(b,Q)\Big|_{all\ b} \approx \widetilde{W}_{pert}(b_*,Q)e^{-\mathcal{F}_{NP}(b,Q)}$$

☐ The perturbative term \widetilde{W}_{pert} depends on $b_* \equiv b/(1+b^2/b_{max}^2)$, with $b_{max} \approx 1 \text{ GeV}^{-1}$

$$\mathcal{F}_{NP}(b,Q) = \mathcal{F}_{S}(b,Q) + \mathcal{F}_{P}(b,x_{A}) + \mathcal{F}_{P}(b,x_{B})$$

Renormalon analysis (Korchemsky, Sterman) suggests that

$$\mathcal{F}_S(b,Q) \approx b^2 \{a_1 + a_2 \ln Q\} \oplus \text{ smaller corrections }$$

- A lattice QCD estimate gives $a_2 = 0.19^{+0.12}_{-0.09}$ GeV² (Tafat); a_2 is the same in Drell-Yan, SIDIS and e^+e^- hadroproduction; arises from the soft (Sudakov) factor and is spin-independent
- \Box \sqrt{s} dependence may arise from $\mathcal{F}_P(x,b)$ ($x_{A,B}=Q/\sqrt{s}e^{\pm y}$)

Comparison with fixed-target Drell-Yan and Tevatron Z data

□ Renormalon analysis

$$\mathcal{F}_{NP}(b,Q) \approx b^2 \left\{ a_1 + 0.19 \ln \left(\frac{Q}{Q_0} \right) \right\} \equiv a(Q)b^2$$

- \square A global q_T fit (Brock, Landry, P. N., Yuan, 2002)
 - \blacklozenge b_* model with $b_{max} = 0.5 \text{ GeV}^{-1}$: $\widetilde{W}'_{pert}(b) \to \widetilde{W}_{pert}(b_{max})$ at $b \gg b_{max}$

$$\mathcal{F}_{NP}(b,Q) = b^2 \left[0.21 + 0.68 \ln \left(\frac{Q}{3.2 \, \text{GeV}} \right) - 0.13 \ln \left(\underbrace{100 x_A x_B}_{100 Q^2/s} \right) \right]$$

$$\bullet \ a(M_Z) \sim \langle k_T^2 \rangle / 2 \approx 2.7 \ \text{GeV}^2$$

■ Extrapolation models

(Qiu, Zhang; Kulesza, Sterman, Vogelsang)

$$igl *\widetilde{W}_{pert}'(b) \Big|_{b>b_{max}} = \left(ext{extrapolated } \widetilde{W}_{pert}(b) \Big|_{b\leq b_{max}}
ight)$$

$$\bullet a(M_Z) \approx 0.8 \, \text{GeV}^2$$

Which result to believe?

Nonperturbative smearing a(Q): independent scans of 5 experiments at $\sqrt{s}=27.4-1800~{\rm GeV}$

- lue The best-fit a(Q) shows quasi-linear dependence on $\operatorname{In}(Q)$
- □ Its energy derivative, $a_2 = da/d(\ln Q) \sim 0.18 \, \text{GeV}^2$, agrees well with the lattice QCD estimate, $(a_2)_{lattice} = 0.19^{+0.12}_{-0.09} \, \text{GeV}^2$

Global fit in the revised b_* prescription: scan over b_{max}

Best fit: $b_{max} \approx 1.5 \ {\rm GeV}^{-1}, \, \beta \approx -0.4 - 0.3$ (set to 0), $a_1 \approx 0.23$, $a_2 \approx 0.18, \, a_3 \approx -0.05$

- \Box The new fit supports dominance of soft contributions in $\mathcal{F}_{NP}(b,Q)$
 - $igoplus Gaussian \mathcal{F}_{NP}(b,Q) = b^2 \left[0.20 + 0.19 \ln(Q/3.2) 0.026 \ln(100x_Ax_B) \right]$
 - lacktriangle linear In Q dependence
 - lacktriangle small \sqrt{s} dependence
 - ◆ no flavor dependence
- lacksquare Drell-Yan q_T data from RHIC can
 - lacktriangle test $\mathcal{F}_{NP}(b,Q)$ at intermediate $\sqrt{s}=200$ or 500 GeV
 - resolve remaining tensions between the experiments
 - lacktriangle test spin independence of $\mathcal{F}_{NP}(b,Q)$

Spin (in)dependence of k_T smearing

Universal kT smearing

Spin-dependent Sudakov factor

Spin dependence from the unintegrated PDF's and/or Sudakov factor New opportunities at RHIC (part 2): hadronic decays of W bosons

- The $W \to e \nu$ decay is the golden mode at large luminosities $(\mathcal{L} > 300 \ \mathrm{pb}^{-1})$
- \square Hadronic decays may be competitive at RHIC for lower $\mathcal{L}\approx 100~\text{pb}^{-1}$ and reduced instrumentation (no lepton charge ID)
- ☐ Hadronic decay mode should be more accessible at RHIC than at the Tevatron or LHC
 - lacktriangle much lower background, especially for parity-violating A_L
 - lacktriangle lower resolution sufficient (it is not the M_W measurement)

$W \rightarrow \mathsf{hadrons} \; \mathsf{at} \; \mathsf{SPS} \; (PL, B186, 452 \, (1987))$

- $\ \square \ p\bar{p} \to WX$, $\sqrt{s} = 630$ GeV, $\mathcal{L} = 0.73 \, \mathrm{pb}^{-1}$; $x \sim 0.13$
- □ background/signal≈ 20
- □ background is smooth
 - can be extrapolated from the sidebands
- ☐ Mass resolution $\delta m = 8 9$ GeV

 $W o \mathsf{hadrons} \ \mathsf{at} \ \mathsf{Tevatron} \ \textit{(J. Pumplin, PRD45, 806 (1992); U. Baur et al., hep-ph/0005226)}$

- $p\bar{p} \rightarrow WX, \sqrt{s} = 1.8 \text{ TeV},$ $x \sim 0.04$
- □ background/signal≈ 570
- After an angular cut in the W rest frame: background/signal \approx 255 $QQ/W \approx 22, QG/W \approx 101, GG/W \approx 132$
- $oldsymbol{\square}$ mass resolution $\delta M_{jj} \geq ext{0.5 GeV}$
- $\ \square$ of no use for M_W measurement, unless the gluon background is drastically reduced

Hadronic decays: RHIC vs. SPS and Tevatron

- \odot smaller \sqrt{s} (500 vs. 630 and 1800 GeV); gluon background \downarrow
- $\bigcirc pp$ vs. $p\bar{p}$: gluon background \uparrow
 - \Rightarrow background/signal \approx 20 for σ_L ;

$$pprox$$
 0 for $\Delta_L^{PV}\sigma$ (false asymmetry only!)

(a) the background can be extrapolated from the sidebands

Hadronic vs. leptonic decays

- ullet Larger cross sections: ${\rm Br}(W \to q_i \bar{q}_j)/{\rm Br}(W \to e \nu) \approx 6$
- $oldsymbol{\Theta}$ Direct measurement of $d\sigma/dy_W$ possible
- ② Symmetry between the jets⇒ smaller dependence on the acceptance
- - \bigcirc Increased Z^0 contamination:

$$Br(Z \rightarrow q\bar{q})/Br(Z \rightarrow e^{+}e^{-}) \approx 20$$

leptonic decays:
$$\sigma_{W^+}$$
 : σ_{W^-} : $\sigma_{Z^0}=1$: 0.33 : 0.08

hadronic decays:
$$\sigma_{W^+}$$
 : σ_{W^-} : $\sigma_{Z^0}=1$: 0.33 : 0.26

 $oldsymbol{\Theta}$ The Z^0 component can be reduced by reweighting M_{jj} bins

Combined W^{\pm} sample (left) vs. W^{+} sample (right) for $W \rightarrow e\nu$

Summary

- \Box High quality of the global q_T fits supports universality of the non-perturbative contributions $\mathcal{F}_{NP}(b,Q)$ in unpolarized Drell-Yan-like processes
- \Box Future RHIC low-Q Drell-Yan q_T data can further constrain $\mathcal{F}_{NP}(b,Q)$ and test its spin independence
 - what are the plausible experimental parameters for such a measurement?
- lacktriangledown Potential for the measurement of A_L^{PV} in hadronic W decay channels is promising at low \mathcal{L} ; can be investigated as a contribution to this workshop

Backup slides

Experimental uncertainties: a(Q) at $Q=M_W$ and $Q=M_Z$ for $b_{max}=1.2~{\rm GeV}^{-1}$

Obtained using a Lagrange multiplier method

 \Box Errors are for $\delta \chi^2_{tot} = 1$

A preliminary fit: g(Q) = a(Q)

 \Box Translates into a variation $\approx \pm 50$ MeV in the peak of $d\sigma(W)/dq_T$

Summary

- \Box q_T resummation in b-space has excellent predictive power
- lacktriangle Recent developments in q_T resummation include
 - lacktriangle a model for large-b contributions in Drell-Yan-like processes
 - * the 2005 fit prefers a universal 2-parameter Gaussian non-perturbative function $S_{NP}(b,Q)$, with $\ln Q$ dependence in a quantitative agreement with lattice QCD
 - lacktriangle study of energy (x) dependence of resummed cross sections
 - * If broadening of $d\sigma/dq_T$ is observed in forward Z boson (Drell-Yan pair) production in the Tevatron Run-2, it will strongly affect predictions for W and Z production at the LHC
 - lacktriangle New method (CSS+ACOT) for three-scale resummation (q_T,Q,M) in heavy flavor production
 - \star quantitative evaluation of mass effects in production of heavy flavors, W, SUSY Higgs bosons, etc.

Backup slides

Polarized semi-inclusive DIS

flavour separation by flavour tagging

flavour content of final state hadrons related to flavour of struck quark via fragmentation functions

$$A_1^h(x,Q^2) = \frac{\frac{h}{1/2} - \frac{h}{3/2}}{\frac{h}{1/2} + \frac{h}{3/2}} \approx \frac{\sum_q e_q^2 \ q \ (x,Q^2) \int dz \ D_q^h(z,Q^2)}{\sum_q e_q^2 \ q \ (x,Q^2) \int dz \ D_q^h(z,Q^2)}$$

Born-level analysis
Fragmentation contributes constant factors

SIDIS at HERMES, COMPASS, and JLab

$$\frac{\Delta u(x)}{u(x)}, \frac{\Delta d(x)}{d(x)}, \frac{\Delta s(x)}{s(x)}, \frac{\Delta \bar{u}(x)}{\bar{u}(x)}, \frac{\Delta \bar{d}(x)}{\bar{d}(x)}$$

Born-level analysis

- $egin{array}{l} \blacksquare$ may be OK for $\Delta u(x)/u(x), \ \Delta d(x)/d(x) \end{array}$
 - + helicity conversation in PQCD radiation off valence quarks
 - unreliable at low Q
 - wrong kinematics
- $egin{array}{ll} egin{array}{ll} \operatorname{probably} & \operatorname{not} & \operatorname{OK} & \operatorname{for} \\ \Delta ar{q}(x)/ar{q}(x) & & & \end{array}$
- dependence on the fragmentation model
- power-suppressed terms?

QCD factorization in hard and soft regions

Finite-order (FO) factorization

Small- q_T factorization

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \mathcal{P}(x,k_T) \end{aligned} \end{aligned}$$

Solution for all q_T :

